

Twine Solutions Ltd. 7 Hatnufa Petah Tikva 4951025 Israel

Hohenstein Textile Testing Institute GmbH & Co. KG Schloss Hohenstein 74357 Bönnigheim Germany

Report no. 22.0009189 Rev. 1

from 12/21/2022

Your Contact Person Hochberg, Dana

(Dana.Hochberg@twine-s.com)

+972 3 5589505

Order Date 11/24/2022

Period of Testing 11/24/2022 - 11/29/2022 **Customer Reference**

No customer references

provided.

Aim of Test STANDARD 100 by OEKO-TEX® Annex 4 product class I Edition 01.2022

Testing Material Digitally dyed Epic thread- Cyan, Magenta, Yellow and Black

Sampling The test object was sent to Hohenstein by the client.

Our Contact Person Division Textile Testing

(testing@hohenstein.de)

Report Approval

OCH Joss Hohen Dr. rer. nat. Christof Madinger **Chief Operating Officer**

Lale Albayrak-Hindel, B. Eng. Teamleiterin | Team Leader Textile Testing

Summary

Passed


Testing Material

1 Yarn	
Color	Blue
Material composition	PES

2 Yarn	
Color	Pink
Material composition	PES

2 Yarn

2 Yarn

3 Yarn

Color	Yellow
Material composition	PES

3 Yarn

4 Yarn

Color	Black
Material composition	PES

4 Yarn

4 Yarn

Test Overview

pH-Value	
1 Yarn	page 11 🗸
2 Yarn	page 11 🗸
3 Yarn	page 11 🗸
4 Yarn	page 11 🗸
Formaldehyde	
1 Yarn	page 12 🗸
2 Yarn	page 12 🗸
3 Yarn	page 12 🗸
4 Yarn	page 12 🗸
Extractable (heavy) metals	
1 Yarn	page 13 🗸
2 Yarn	page 13 🗸
3 Yarn	page 13 🗸
4 Yarn	page 13 🗸
Organic tin compounds	
1 Yarn	page 14 🗸
2 Yarn	page 14 🗸
3 Yarn	page 14 🗸
4 Yarn	page 14 🗸

Free, cleavable and carcinogenic arylamines, free and cleavable aniline	
1 Yarn	page 15 🗸
2 Yarn	page 15 🗸
3 Yarn	page 15 🗸
4 Yarn	page 15
Allergenic, carcinogenic and other banned colorants	
1 Yarn	page 17 🗸
2 Yarn	page 17 🗸
3 Yarn	page 17 🗸
4 Yarn	page 17 🗸
Quinoline	
1 Yarn	page 19
2 Yarn	page 19
3 Yarn	page 19
4 Yarn	page 19
Chlorinated benzenes and toluenes	
1 Yarn	page 20 🗸
2 Yarn	page 20 🗸
3 Yarn	page 20 🗸
4 Yarn	page 20 🗸
Polycyclic aromatic hydrocarbons	
1 Yarn	page 22 🗸

HOHENSTEIN

	HOHENSTEIN
Polycyclic aromatic hydrocarbons	
2 Yarn	page 22 🗸
3 Yarn	page 22 🗸
4 Yarn	page 22 🗸
Solvent residues	
2 Yarn	page 24 🗸
4 Yarn	page 24 🗸
Surfactant, wetting agent residues, alkyl phenols	
1 Yarn	page 25 🗸
2 Yarn	page 25 🗸
3 Yarn	page 25 🗸
4 Yarn	page 25 🗸
Color fastness to water	
1 Yarn	page 26 🗸
2 Yarn	page 26
3 Yarn	page 26 🗸
4 Yarn	page 26
Color fastness to perspiration	
1 Yarn	page 27 🗸
2 Yarn	page 27
3 Yarn	page 27
4 Yarn	page 27 🗸

HOHENSTEIN

Revision History

The current revision cancels and replaces the original version of the report and all previous revisions.

Rev.	Date	Approved By	Reason
	12/1/2022	Stefan Bantle, B. Eng.	Initial approval
1	12/21/2022		Change of designation of the test material

Terms of Use

The results relate only to the samples examined. The measurement uncertainty of the method is already considered while determining limit values, unless otherwise noted. This report must only be reproduced in full and not in extract form. Use of the report in advertising or the publication of free interpretations of the results is only allowed with the express permission of Hohenstein. Only the authorized report is legally binding.

Our general terms and conditions of the respective laboratory location apply: www.hohenstein.com/en/gtcb

List of abbreviations

n.d. = not detectable

LOQ = Limit of quantitation

Appendix Table of Contents

Detail Results page 11

Detail Results

pH-Value

The following results were evaluated against the limit values (LV): STANDARD 100 by OEKO-TEX® Annex 4 product class I, 01.2022

	1	2	3	4	LV
pH-value	5.5	5.2	5.2	5.4	≥ 4.0 ≤ 7.5
		A	dditional details	for this test	

Parameter hints:

Formaldehyde

The following results were evaluated against the limit values (LV): STANDARD 100 by OEKO-TEX® Annex 4 product class I, 01.2022

	1^{C1} [mg/kg]	2^{C1} [mg/kg]	3^{C2} [mg/kg]	4^{C2} [mg/kg]	LOQ [mg/kg]	LV [mg/kg]
Formaldehyde	n.d.	n.d.	n.d.	n.d.	< 10	< 16
			Fo	ootnotes		
Composite Samples	C1 1, 2 C2 3, 4					

Additional details for this test

Parameter hints:

Testing method according to STANDARD 100 by OEKO-TEX®

Result value details:

Formaldehyde

n.d. corresponds according to "Japanese Law 112" test method with an absorbance unit less than 0.05 resp. 16 mg/kg.

Extractable (heavy) metals

The following results were evaluated against the limit values (LV): STANDARD 100 by OEKO-TEX® Annex 4 product class I, 01.2022

	1 [mg/kg]	2 [mg/kg]	3 [mg/kg]	4 [mg/kg]	LOQ [mg/kg]	LV [mg/kg]
Antimony	n.d.	n.d.	n.d.	n.d.	< 4	< 30
Arsenic	n.d.	n.d.	n.d.	n.d.	< 0.05	< 0.20
Lead	n.d.	n.d.	n.d.	n.d.	< 0.05	< 0.20
Cadmium	n.d.	n.d.	n.d.	n.d.	< 0.05	< 0.10
Chromium	n.d.	n.d.	n.d.	n.d.	< 0.1	< 1.0
Cobalt	n.d.	n.d.	n.d.	n.d.	< 0.1	< 1.0
Copper	n.d.	n.d.	n.d.	n.d.	< 4	< 25
lickel	n.d.	n.d.	n.d.	n.d.	< 0.10	< 1.00
Mercury	n.d.	n.d.	n.d.	n.d.	< 0.010	< 0.020
Barium	n.d.	n.d.	n.d.	n.d.	< 4	< 1000
Selenium	n.d.	n.d.	n.d.	n.d.	< 4	< 100

Additional details for this test

Parameter hints:

Testing method according to STANDARD 100 by OEKO-TEX®

Result value details:

Coppe

No requirement for accessories and yarns made from inorganic materials, respecting the requirements regarding biological active products.

Organic tin compounds

The following results were evaluated against the limit values (LV): STANDARD 100 by OEKO-TEX® Annex 4 product class I, 01.2022

	1^{C1} [mg/kg]	2^{C1} [mg/kg]	3^{C2} [mg/kg]	4^{C2} [mg/kg]	LOQ [mg/kg]	LV [mg/kg]
Monomethyltin (MMT)	n.d.	n.d.	n.d.	n.d.	< 0.05	< 1.00
Monobutyltin (MBT)	n.d.	n.d.	n.d.	n.d.	< 0.05	< 1.00
Monooctyltin (MOT)	n.d.	n.d.	n.d.	n.d.	< 0.05	< 1.00
Monophenyltin (MPhT)	n.d.	n.d.	n.d.	n.d.	< 0.05	< 1.00
Dimethyltin (DMT)	n.d.	n.d.	n.d.	n.d.	< 0.05	< 1.00
Dipropyltin (DPT)	n.d.	n.d.	n.d.	n.d.	< 0.05	< 1.00
Dibutyltin (DBT)	n.d.	n.d.	n.d.	n.d.	< 0.05	< 1.00
Dioctyltin (DOT)	n.d.	n.d.	n.d.	n.d.	< 0.05	< 1.00
Diphenyltin (DPhT)	n.d.	n.d.	n.d.	n.d.	< 0.05	< 1.00
Trimethyltin (TMT)	n.d.	n.d.	n.d.	n.d.	< 0.05	< 1.00
Tripropyltin (TPT)	n.d.	n.d.	n.d.	n.d.	< 0.05	< 1.00
Tributyltin (TBT)	n.d.	n.d.	n.d.	n.d.	< 0.05	< 0.50
Trioctyltin (TOT)	n.d.	n.d.	n.d.	n.d.	< 0.05	< 1.00
Triphenyltin (TPhT)	n.d.	n.d.	n.d.	n.d.	< 0.05	< 0.50
Tricyclohexyltin (TCyHT)	n.d.	n.d.	n.d.	n.d.	< 0.05	< 1.00
Tetraethyltin (TeET)	n.d.	n.d.	n.d.	n.d.	< 0.05	< 1.00
Tetrabutyltin (TeBT)	n.d.	n.d.	n.d.	n.d.	< 0.05	< 1.00
Tetraoctyltin (TeOT)	n.d.	n.d.	n.d.	n.d.	< 0.05	< 1.00

Composite Samples

C1 1, 2 **C2** 3, 4

Additional details for this test

Parameter hints:

Free, cleavable and carcinogenic arylamines, free and cleavable aniline

The following results were evaluated against the limit values (LV): STANDARD 100 by OEKO-TEX® Annex 4 product class I, 01.2022

n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.	n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.	n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.	< 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10	< 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20
n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.	n.d. n.d. n.d. n.d. n.d. n.d. n.d.	n.d. n.d. n.d. n.d. n.d. n.d.	< 10 < 10 < 10 < 10 < 10 < 10	< 20 < 20 < 20 < 20 < 20
n.d. n.d. n.d. n.d. n.d. n.d. n.d.	n.d. n.d. n.d. n.d. n.d. n.d.	n.d. n.d. n.d. n.d. n.d.	< 10 < 10 < 10 < 10	< 20 < 20 < 20 < 20
n.d. n.d. n.d. n.d. n.d.	n.d. n.d. n.d. n.d. n.d.	n.d. n.d. n.d.	< 10 < 10 < 10	< 20 < 20 < 20
n.d. n.d. n.d. n.d.	n.d. n.d. n.d.	n.d. n.d.	< 10 < 10	< 20 < 20
n.d. n.d. n.d.	n.d. n.d. n.d.	n.d.	< 10	< 20
n.d. n.d.	n.d.	n.d.		
n.d.	n.d.		< 10	< 20
n.d.		n.d.		
	n.d.		< 10	< 20
n.d.		n.d.	< 10	< 20
	n.d.	n.d.	< 10	< 20
n.d.	n.d.	n.d.	< 10	< 20
n.d.	n.d.	n.d.	< 10	< 20
n.d.	n.d.	n.d.	< 10	< 20
n.d.	n.d.	n.d.	< 10	< 20
n.d.	n.d.	n.d.	< 10	< 20
n.d.	n.d.	n.d.	< 10	< 20
n.d.	n.d.	n.d.	< 10	< 20
n.d.	n.d.	n.d.	< 10	< 20
n.d.	n.d.	n.d.	< 10	< 20
n.d.	n.d.	n.d.	< 10	< 20
n.d.	n.d.	n.d.	< 10	< 20
n.d.	n.d.	n.d.	< 10	-
n.d.	n.d.	n.d.	< 10	-
	n.d.	n.d.	< 10	-
n.d.	n.d.	n.d.	< 10	-
	n.d.	n.d. n.d.	n.d. n.d. n.d. n.d. n.d.	n.d. n.d. <10

Composite Samples

C1 1, 2

Additional details for this test

Parameter hints:

Testing method according to STANDARD 100 by OEKO-TEX® o-Aminoazotoluene is detected indirectly by analysis of o-Toluidine. 2-Amino-4-nitrotoluene is detected indirectly by analysis of 2,4-Toluylenediamine.

Result value details:

2,4-Xylidine / 2,6-Xylidine

2,4-Xylidine and 2,6-Xylidine have not been separated analytically, so that the determined value is given for both substances combined.

2-Methyl-p-phenylendiamine

2-Methyl-p-phenylendiamine is under observation and the result is provided for information but presently not regulated indeed.

3,3'-Diaminobenzidine (biphenyl-3,3'4,4'-tetrayltetraamine)

3,3'-Diaminobenzidine (biphenyl-3,3'4,4'-tetrayltetraamine) is under observation and the result is provided for information but presently not regulated indeed.

p-Phenetidine

p-Phenetidine is under observation and the result is provided for information but presently not regulated indeed.

p-Anisidine

p-Anisidine is under observation and the result is provided for information but presently not regulated indeed.

Allergenic, carcinogenic and other banned colorants

The following results were evaluated against the limit values (LV): STANDARD 100 by OEKO-TEX® Annex 4 product class I, 01.2022

	1 ^{C1} [mg/kg]	2^{C1} [mg/kg]	3^{C2} [mg/kg]	4^{c2} [mg/kg]	LOQ [mg/kg]	LV [mg/kg]
Acid Violet 49	n.d.	n.d.	n.d.	n.d.	< 10	-
Basic Blue 26	n.d.	n.d.	n.d.	n.d.	< 10	< 50
Basic Green 4 (chloride, free, oxalate)	n.d.	n.d.	n.d.	n.d.	< 10	< 50
Basic Red 9	n.d.	n.d.	n.d.	n.d.	< 10	< 50
Basic Violet 1	n.d.	n.d.	n.d.	n.d.	< 10	-
Basic Violet 3	n.d.	n.d.	n.d.	n.d.	< 10	< 50
Basic Violet 14	n.d.	n.d.	n.d.	n.d.	< 10	< 50
Disperse Blue 1	n.d.	n.d.	n.d.	n.d.	< 10	< 50
Disperse Blue 3	n.d.	n.d.	n.d.	n.d.	< 10	< 50
Disperse Blue 7	n.d.	n.d.	n.d.	n.d.	< 10	< 50
Disperse Blue 26	n.d.	n.d.	n.d.	n.d.	< 10	< 50
Disperse Blue 35	n.d.	n.d.	n.d.	n.d.	< 10	< 50
Disperse Blue 102	n.d.	n.d.	n.d.	n.d.	< 10	< 50
Disperse Blue 106	n.d.	n.d.	n.d.	n.d.	< 10	< 50
Disperse Blue 124	n.d.	n.d.	n.d.	n.d.	< 10	< 50
Disperse Brown 1	n.d.	n.d.	n.d.	n.d.	< 10	< 50
Disperse Orange 1	n.d.	n.d.	n.d.	n.d.	< 10	< 50
Disperse Orange 3	n.d.	n.d.	n.d.	n.d.	< 10	< 50
Disperse Orange 11	n.d.	n.d.	n.d.	n.d.	< 10	< 50
Disperse Orange 37/59/76	n.d.	n.d.	n.d.	n.d.	< 10	< 50
Disperse Orange 149	n.d.	n.d.	n.d.	n.d.	< 10	< 50
Disperse Red 1	n.d.	n.d.	n.d.	n.d.	< 10	< 50
Disperse Red 11	n.d.	n.d.	n.d.	n.d.	< 10	< 50
Disperse Red 17	n.d.	n.d.	n.d.	n.d.	< 10	< 50
Disperse Yellow 1	n.d.	n.d.	n.d.	n.d.	< 10	< 50
Disperse Yellow 3	n.d.	n.d.	n.d.	n.d.	< 10	< 50
Disperse Yellow 9	n.d.	n.d.	n.d.	n.d.	< 10	< 50
Disperse Yellow 23	n.d.	n.d.	n.d.	n.d.	< 10	< 50

HOHENSTEIN

	1 ^{C1} [mg/kg]	2^{C1} [mg/kg]	3^{C2} [mg/kg]	4^{C2} [mg/kg]	LOQ [mg/kg]	LV [mg/kg]
Disperse Yellow 39	n.d.	n.d.	n.d.	n.d.	< 10	< 50
Disperse Yellow 49	n.d.	n.d.	n.d.	n.d.	< 10	< 50
Solvent Yellow 1 (4-Aminoazobenzol / Anilin Yellow)	n.d.	n.d.	n.d.	n.d.	< 10	< 50
Solvent Yellow 2	n.d.	n.d.	n.d.	n.d.	< 10	-
Solvent Yellow 3 (o-Aminoazotoluene)	n.d.	n.d.	n.d.	n.d.	< 10	< 50
Solvent Yellow 14	n.d.	n.d.	n.d.	n.d.	< 10	-
Basic Yellow 2 / Solvent Yellow 34 (hydrochloride and free base)	n.d.	n.d.	n.d.	n.d.	< 10	-

Footnotes

Composite Samples

C1 1, 2 **C2** 3, 4

Additional details for this test

Parameter hints:

Testing method according to STANDARD 100 by OEKO-TEX®

Acid Red 26, Acid Red 114, Direct Black 38, Direct Blue 6, Direct Blue 15, Direct Blue 218, Direct Brown 95, Direct Red 28, Pigment Red 104 and Pigment Yellow 34 have no value since no direct quantitative analysis is possible.

Result value details:

Acid Violet 49

Acid Violet 49 has no requirements for Annex 4.

Basic Violet 1

Basic Violet 1 has no requirements for Annex 4.

Solvent Yellow 2

Solvent Yellow 2 has no requirements for Annex 4.

Solvent Yellow 14

Solvent Yellow 14 has no requirements for Annex 4.

Basic Yellow 2 / Solvent Yellow 34 (hydrochloride and free base)

Basic Yellow 2 / Solvent Yellow 34 (hydrochloride and free base) is under observation and the result is provided for information but presently not regulated indeed.

Quinoline

The following results were evaluated against the limit values (LV): STANDARD 100 by OEKO-TEX® Annex 4 product class I, 01.2022

	1 ^{C1} [mg/kg]	2^{C1} [mg/kg]	3^{C2} [mg/kg]	4^{C2} [mg/kg]	LOQ [mg/kg]	LV [mg/kg]
Quinoline	n.d.	n.d.	n.d.	n.d.	< 10	< 50
			Fo	ootnotes		
Composite Samples	C1 1, 2 C2 3, 4					

Additional details for this test

Parameter hints:

Chlorinated benzenes and toluenes

The following results were evaluated against the limit values (LV): STANDARD 100 by OEKO-TEX® Annex 4 product class I, 01.2022

	1 [mg/kg]	2 [mg/kg]	3 [mg/kg]	4 [mg/kg]	LOQ [mg/kg]	LV [mg/kg]
Chlorobenzene	n.d.	n.d.	n.d.	n.d.	< 0.10	-
1,2-Dichlorobenzene	n.d.	n.d.	n.d.	n.d.	< 0.10	-
1,3-Dichlorobenzene	n.d.	n.d.	n.d.	n.d.	< 0.10	-
1,4-Dichlorobenzene	n.d.	n.d.	n.d.	n.d.	< 0.10	-
1,2,3-Trichlorobenzene	n.d.	n.d.	n.d.	n.d.	< 0.10	-
1,2,4-Trichlorobenzene	n.d.	n.d.	n.d.	n.d.	< 0.10	-
1,3,5-Trichlorobenzene	n.d.	n.d.	n.d.	n.d.	< 0.10	-
1,2,3,4-Tetrachlorobenzene	n.d.	n.d.	n.d.	n.d.	< 0.10	-
1,2,3,5-Tetrachlorobenzene	n.d.	n.d.	n.d.	n.d.	< 0.10	-
1,2,4,5-Tetrachlorobenzene	n.d.	n.d.	n.d.	n.d.	< 0.10	-
Pentachlorobenzene	n.d.	n.d.	n.d.	n.d.	< 0.10	-
Hexachlorobenzene	n.d.	n.d.	n.d.	n.d.	< 0.10	-
2-Chlorotoluene	n.d.	n.d.	n.d.	n.d.	< 0.10	-
3-Chlorotoluene	n.d.	n.d.	n.d.	n.d.	< 0.10	-
4-Chlorotoluene	n.d.	n.d.	n.d.	n.d.	< 0.10	-
a-Chlorotoluene	n.d.	n.d.	n.d.	n.d.	< 0.10	-
2,3-/3,4-Dichlorotoluene	n.d.	n.d.	n.d.	n.d.	< 0.10	-
2,4-Dichlorotoluene	n.d.	n.d.	n.d.	n.d.	< 0.10	-
2,5-/2,6-Dichlorotoluene	n.d.	n.d.	n.d.	n.d.	< 0.10	-
3,5-Dichlorotoluene	n.d.	n.d.	n.d.	n.d.	< 0.10	-
a,a-Dichlorotoluene	n.d.	n.d.	n.d.	n.d.	< 0.10	-
2,3,4-Trichlorotoluene	n.d.	n.d.	n.d.	n.d.	< 0.10	-
2,3,5-/2,4,5-Trichlorotoluene	n.d.	n.d.	n.d.	n.d.	< 0.10	-
2,3,6-Trichlorotoluene	n.d.	n.d.	n.d.	n.d.	< 0.10	-
2,4,6-Trichlorotoluene	n.d.	n.d.	n.d.	n.d.	< 0.10	-
3,4,5-Trichlorotoluene	n.d.	n.d.	n.d.	n.d.	< 0.10	-
a,a,a-Trichlorotoluene	n.d.	n.d.	n.d.	n.d.	< 0.10	_
a,2,4-Trichlorotoluene	n.d.	n.d.	n.d.	n.d.	< 0.10	-

	1 [mg/kg]	2 [mg/kg]	3 [mg/kg]	4 [mg/kg]	LOQ [mg/kg]	LV [mg/kg]
a,2,6-Trichlorotoluene	n.d.	n.d.	n.d.	n.d.	< 0.10	-
a,3,4-Trichlorotoluene	n.d.	n.d.	n.d.	n.d.	< 0.10	-
2,3,4,5-Tetrachlorotoluene	n.d.	n.d.	n.d.	n.d.	< 0.10	-
2,3,4,6-Tetrachlorotoluene	n.d.	n.d.	n.d.	n.d.	< 0.10	-
2,3,5,6-Tetrachlorotoluene	n.d.	n.d.	n.d.	n.d.	< 0.10	-
a,a,a,2-Tetrachlorotoluene	n.d.	n.d.	n.d.	n.d.	< 0.10	-
a,a,a,4-Tetrachlorotoluene	n.d.	n.d.	n.d.	n.d.	< 0.10	-
a,a,2,6-Tetrachlorotoluene	n.d.	n.d.	n.d.	n.d.	< 0.10	-
Pentachlorotoluene	n.d.	n.d.	n.d.	n.d.	< 0.10	-
Sum	n.d.	n.d.	n.d.	n.d.	-	< 1.00

Additional details for this test

Parameter hints:

Testing method according to STANDARD 100 by OEKO-TEX®

Result value details:

2,3-/3,4-Dichlorotoluene

2,3-Dichlorotoluene and 3,4-Dichlorotoluene are not analytically separable, so that the determined value for both substances must be given combined.

2,5-/2,6-Dichlorotoluene

2,5-Dichlorotoluene und 2,6-Dichlorotoluene are not analytically separable, so that the determined value for both substances must be given combined.

2,3,5-/2,4,5-Trichlorotoluene

2,3,5-Trichlorotoluene und 2,4,5-Trichlorotoluene are not analytically separable, so that the determined value for both substances must be given combined.

Polycyclic aromatic hydrocarbons

The following results were evaluated against the limit values (LV): STANDARD 100 by OEKO-TEX® Annex 4 product class I, 01.2022

	1^{C1} [mg/kg]	2^{C1} [mg/kg]	3^{C2} [mg/kg]	4^{C2} [mg/kg]	LOQ [mg/kg]	LV [mg/kg]
Acenaphthene	n.d.	n.d.	n.d.	n.d.	< 0.20	-
Acenaphthylene	n.d.	n.d.	n.d.	n.d.	< 0.20	-
Anthracene	n.d.	n.d.	n.d.	n.d.	< 0.20	-
Benzo[a]anthracene	n.d.	n.d.	n.d.	n.d.	< 0.20	< 0.50
Benzo[b,k,j]fluoranthene	n.d.	n.d.	n.d.	n.d.	< 0.20	< 0.50
Benzo[ghi]perylene	n.d.	n.d.	n.d.	n.d.	< 0.20	-
Benzo[a]pyrene	n.d.	n.d.	n.d.	n.d.	< 0.20	< 0.50
Benzo[e]pyrene	n.d.	n.d.	n.d.	n.d.	< 0.20	< 0.50
Chrysene	n.d.	n.d.	n.d.	n.d.	< 0.20	< 0.50
Cyclopenta[c,d]pyrene	n.d.	n.d.	n.d.	n.d.	< 0.20	-
Dibenzo[a,h]anthracene	n.d.	n.d.	n.d.	n.d.	< 0.20	< 0.50
Dibenzo[a,e]pyrene	n.d.	n.d.	n.d.	n.d.	< 0.20	-
Dibenzo[a,h]pyrene	n.d.	n.d.	n.d.	n.d.	< 0.20	-
Dibenzo[a,i]pyrene	n.d.	n.d.	n.d.	n.d.	< 0.20	-
Dibenzo[a,l]pyrene	n.d.	n.d.	n.d.	n.d.	< 0.20	-
Fluoranthene	n.d.	n.d.	n.d.	n.d.	< 0.20	-
Fluorene	n.d.	n.d.	n.d.	n.d.	< 0.20	-
Indeno[1,2,3-cd]pyrene	n.d.	n.d.	n.d.	n.d.	< 0.20	-
1-Methylpyrene	n.d.	n.d.	n.d.	n.d.	< 0.20	-
Naphthalene	n.d.	n.d.	n.d.	n.d.	< 0.20	-
Phenanthrene	n.d.	n.d.	n.d.	n.d.	< 0.20	-
Pyrene	n.d.	n.d.	n.d.	n.d.	< 0.20	-
Sum 24 PAHs	n.d.	n.d.	n.d.	n.d.	-	< 5.00
			Foot	tnotes		

Composite Samples

C1 1, 2 **C2** 3, 4

Additional details for this test

Parameter hints:

Testing method according to STANDARD 100 by OEKO-TEX®

Result value details:

Benzo[b,k,j]fluoranthene

Benzo[b]fluoranthene, benzo[k]fluoranthene and benzo[j]fluoranthene have not been separated analytically and therefore the calculated value for these substances is given in combination.

Solvent residues

The following results were evaluated against the limit values (LV): STANDARD 100 by OEKO-TEX® Annex 4 product class I, 01.2022

	2 [%]	4 [%]	LOQ [%]	LV [%]		
1-Methyl-2-pyrrolidone (NMP)	n.d.	n.d.	< 0.010	< 0.050		
N,N-Dimethylacetamide (DMAc)	n.d.	n.d.	< 0.010	< 0.050		
N,N-Dimethylformamide (DMF)	n.d.	n.d.	< 0.010	< 0.050		
Formamide	n.d.	n.d.	< 0.010	< 0.020		
Additional details for this test						

Parameter hints:

Surfactant, wetting agent residues, alkyl phenols

The following results were evaluated against the limit values (LV): STANDARD 100 by OEKO-TEX® Annex 4 product class I, 01.2022

	1 ^{C1} [mg/kg]	2^{C1} [mg/kg]	3^{C2} [mg/kg]	4^{C2} [mg/kg]	LOQ [mg/kg]	LV [mg/kg]
4-tert-Butylphenol (BP)	n.d.	n.d.	n.d.	n.d.	< 4.0	-
Pentylphenol (PeP)	n.d.	n.d.	n.d.	n.d.	< 4.0	-
Heptylphenol (HpP)	n.d.	n.d.	n.d.	n.d.	< 4.0	-
Octylphenol (OP)	n.d.	n.d.	n.d.	n.d.	< 4.0	-
Nonylphenol (NP)	n.d.	n.d.	n.d.	n.d.	< 4.0	-
Sum BP, NP, OP, HpP, PeP	n.d.	n.d.	n.d.	n.d.	-	< 10.0
Octylphenolethoxylates (OP(EO))	n.d.	n.d.	n.d.	n.d.	< 4.0	-
Nonylphenolethoxylates (NP(EO))	n.d.	n.d.	n.d.	n.d.	< 4.0	-
Sum BP, NP, OP, HpP, PeP, NP(EO), OP(EO)	n.d.	n.d.	n.d.	n.d.	-	< 100.0
	ı	Fo	ootnotes			

Composite Samples

C1 1, 2 **C2** 3, 4

Additional details for this test

Parameter hints:

Color fastness to water

The following results were evaluated against the limit values (LV): STANDARD 100 by OEKO-TEX® Annex 4 product class I, 01.2022

	1	2	3	4	LV
Adjacent fabric 1	Polyester	Polyester	Polyester	Polyester	-
Adjacent fabric 2	Cotton	Cotton	Cotton	Cotton	-
Fastness grade 1	4-5	4-5	4-5	4	(LV1)
Fastness grade 2	4-5	4-5	4-5	4-5	(LV1)
	'	Foot	notes		
Leads to failed	(LV1) 1 / 1-2 / 2 / 2-3	/ 3			

Additional details for this test

Parameter hints:

Color fastness to perspiration

The following results were evaluated against the limit values (LV): STANDARD 100 by OEKO-TEX® Annex 4 product class I, 01.2022

	1	2	3	4	LV
Adjacent fabric 1	Polyester	Polyester	Cotton	Polyester	-
Adjacent fabric 2	Cotton	Cotton	Polyester	Cotton	-
Fastness grade 1 - alkaline	4-5	4-5	4-5	4-5	(LV1)
Fastness grade 2 - alkaline	4-5	4-5	4-5	4-5	(LV1)
Fastness grade 1 - acid	4-5	4-5	4-5	4-5	(LV1)
Fastness grade 2 - acid	4-5	4-5	4-5	4-5	(LV1)
		Footnot	·oc		

Leads to failed

(LV1) 1 / 1-2 / 2 / 2-3 / 3

Additional details for this test

Parameter hints:

Color fastness to saliva and perspiration

The following results were evaluated against the limit values (LV): STANDARD 100 by OEKO-TEX® Annex 4 product class I, 01.2022

	1	2	3	4	LV	
Rating	fast	fast	fast	fast	(LV1)	
Footnotes						
Leads to failed (LV1) not fast						

Additional details for this test

Parameter hints:

Testing method according to STANDARD 100 by OEKO-TEX®

Result value details:

Rating

The evaluation "fast" confirms the saliva and perspiration fastness of the sample. The evaluation "not fast" confirms that the sample is not fast to saliva and perspiration.

Chlorinated solvents, volatile organic compounds, glycols and cresols

The following results were evaluated against the limit values (LV): STANDARD 100 by OEKO-TEX® Annex 6 product class I, 01.2022

	1 [mg/kg]	3 [mg/kg]	LOQ [mg/kg]	LV [mg/kg]
Dichloromethane	n.d.	n.d.	< 0.1	< 1.0
Trichloromethane	n.d.	n.d.	< 0.1	< 1.0
Tetrachloromethane	n.d.	n.d.	< 0.1	< 1.0
1,1-Dichloroethane	n.d.	n.d.	< 0.1	< 1.0
1,2-Dichloroethane	n.d.	n.d.	< 0.1	< 1.0
1,1,1-Trichloroethane	n.d.	n.d.	< 0.1	< 1.0
1,1,2-Trichloroethane	n.d.	n.d.	< 0.1	< 1.0
1,1,1,2-Tetrachloroethane	n.d.	n.d.	< 0.1	< 1.0
1,1,2,2-Tetrachloroethane	n.d.	n.d.	< 0.1	< 1.0
Pentachloroethane	n.d.	n.d.	< 0.1	< 1.0
1,1-Dichloroethylene	n.d.	n.d.	< 0.1	< 1.0
cis-1,2-Dichloroethylene	n.d.	n.d.	< 0.1	-
trans-1,2-Dichloroethylene	n.d.	n.d.	< 0.1	-
Sum 1,2-Dichloroethylene	n.d.	n.d.	-	< 1.0
Trichloroethylene	n.d.	n.d.	< 0.1	< 1.0
Tetra(per)chloroethylene	n.d.	n.d.	< 0.1	< 1.0
Sum of the 14 chlorinated solvents	n.d.	n.d.	-	< 5.0
Methylethylketone	n.d.	n.d.	< 1.0	< 10.0
Ethylbenzene	n.d.	n.d.	< 1.0	< 10.0
m-/p-Xylene	n.d.	n.d.	< 2.0	-
o-Xylene	n.d.	n.d.	< 1.0	-
Sum Xylene	n.d.	n.d.	-	< 10.0
Cyclohexanone	n.d.	n.d.	< 1.0	< 10.0
2-Ethoxyethylacetate	n.d.	n.d.	< 1.0	< 10.0
1,2,3-Trichloropropane	n.d.	n.d.	< 0.1	< 10.0
Acetophenone	n.d.	n.d.	< 1.0	< 10.0
2-Phenyl-2-propanole	n.d.	n.d.	< 1.0	< 10.0
Bis(2-methoxyethyl) ether	n.d.	n.d.	< 1.0	< 10.0

	1 [mg/kg]	3 [mg/kg]	LOQ [mg/kg]	LV [mg/kg
Styrene	n.d.	n.d.	< 1.0	< 10.0
Benzene	n.d.	n.d.	< 0.1	< 1.0
Toluene	n.d.	n.d.	< 1.0	< 10.0
2-Ethoxyethanol	n.d.	n.d.	< 1.0	< 10.0
Ethylene glycol dimethyl ether	n.d.	n.d.	< 2.0	< 10.0
Methylglycol	n.d.	n.d.	< 2.0	< 10.0
2-Methoxyethylacetate	n.d.	n.d.	< 1.0	< 10.0
2-Methoxypropylacetate	n.d.	n.d.	< 1.0	< 10.0
Triethylene glycol dimethyl ether	n.d.	n.d.	< 1.0	< 10.0
1,2-Diethoxyethane	n.d.	n.d.	< 1.0	-
2-Methoxypropanol	n.d.	n.d.	< 1.0	-
o-Cresol	n.d.	n.d.	< 1.0	< 10.0
m-/p-Cresol	n.d.	n.d.	< 2.0	< 10.0

Additional details for the

Parameter hints:

Testing method according to STANDARD 100 by OEKO-TEX®

Result value details:

1,2-Diethoxyethane

1,2-Diethoxyethane is under observation and the result is provided for information but presently not regulated indeed.

2-Methoxypropanol

2-Methoxypropanol is under observation and the result is provided for information but presently not regulated indeed.

m-/p-Cresol

m-Cresol and p-cresol have not been separated analytically, so that the determined value for these substances is given combined.